37 research outputs found

    Blood vessel segmentation in retinal images using echo state networks

    Get PDF
    We propose a novel supervised technique for blood vessel segmentation in retinal images based on echo state networks. Retinal vessel segmentation is widely used for numerous clinical purposes such as the detection of various cardiovascular and ophthalmologic diseases. A large number of retinal vessel segmentation methods have been reported, yet achieving accurate and efficient vessel segmentation still remains a challenge. Recently, reservoir computing has drawn much attention as a new computing framework based on recurrent neural networks. The Echo State Network (ESN), which uses neural nodes as the computing elements of the recurrent network, represents one of the efficient learning models of reservoir computing. This paper investigates the viability of echo state networks for blood vessel segmentation in retinal images. Initial image features are projected onto the echo state network reservoir which maps them, through its internal nodes activations, into a new set of features to be classified into vessel or non-vessel by the echo state network readout which consists, in the proposed approach, of a multi-layer perceptron. Experimental results on the publicly available DRIVE dataset, commonly used in retinal vessel segmentation research, demonstrate the ability of the proposed method in achieving promising performance results in terms of both segmentation accuracy and efficiency

    Application du systĂšme immunitaire artificiel pour la reconnaissance des chiffres

    Get PDF
    International audienceLa reconnaissance automatique de l'écriture occupe un espace important dans la recherche scientifique car elle offre une facilité d'utilisation dans différents domaines d'application : domaine bancaire, postal, le e-commerce... De nombreuses méthodes ont été utilisées pour la reconnaissance d'écriture, dans cet article nous présenterons des méthodes inspirées du systÚme immunitaire naturel que nous appliquerons pour la reconnaissance des chiffres.Des résultats satisfaisants ont été notés durant les expériences d'un taux maximal de 95% en vu d'amélioration par hybridation avec des méthodes d'optimisations

    Textual Data Selection for Language Modelling in the Scope of Automatic Speech Recognition

    Get PDF
    International audienceThe language model is an important module in many applications that produce natural language text, in particular speech recognition. Training of language models requires large amounts of textual data that matches with the target domain. Selection of target domain (or in-domain) data has been investigated in the past. For example [1] has proposed a criterion based on the difference of cross-entropy between models representing in-domain and non-domain-specific data. However evaluations were conducted using only two sources of data, one corresponding to the in-domain, and another one to generic data from which sentences are selected. In the scope of broadcast news and TV shows transcription systems, language models are built by interpolating several language models estimated from various data sources. This paper investigates the data selection process in this context of building interpolated language models for speech transcription. Results show that, in the selection process, the choice of the language models for representing in-domain and non-domain-specific data is critical. Moreover, it is better to apply the data selection only on some selected data sources. This way, the selection process leads to an improvement of 8.3 in terms of perplexity and 0.2% in terms of word-error rate on the French broadcast transcription task

    Multi-objective volleyball premier league algorithm

    Get PDF
    This paper proposes a novel optimization algorithm called the Multi-Objective Volleyball Premier League (MOVPL) algorithm for solving global optimization problems with multiple objective functions. The algorithm is inspired by the teams competing in a volleyball premier league. The strong point of this study lies in extending the multi-objective version of the Volleyball Premier League algorithm (VPL), which is recently used in such scientific researches, with incorporating the well-known approaches including archive set and leader selection strategy to obtain optimal solutions for a given problem with multiple contradicted objectives. To analyze the performance of the algorithm, ten multi-objective benchmark problems with complex objectives are solved and compared with two well-known multiobjective algorithms, namely Multi-Objective Particle Swarm Optimization (MOPSO) and Multi-Objective Evolutionary Algorithm Based on Decomposition (MOEA/D). Computational experiments highlight that the MOVPL outperforms the two state-of-the-art algorithms on multi-objective benchmark problems. In addition, the MOVPL algorithm has provided promising results on well-known engineering design optimization problems

    Echo state network‐based feature extraction for efficient color image segmentation

    Get PDF
    Image segmentation plays a crucial role in many image processing and understanding applications. Despite the huge number of proposed image segmentation techniques, accurate segmentation remains a significant challenge in image analysis. This article investigates the viability of using echo state network (ESN), a biologically inspired recurrent neural network, as features extractor for efficient color image segmentation. First, an ensemble of initial pixel features is extracted from the original images and injected into the ESN reservoir. Second, the internal activations of the reservoir neurons are used as new pixel features. Third, the new features are classified using a feed forward neural network as a readout layer for the ESN. The quality of the pixel features produced by the ESN is evaluated through extensive series of experiments conducted on real world image datasets. The optimal operating range of different ESN setup parameters for producing competitive quality features is identified. The performance of the proposed ESN‐based framework is also evaluated on a domain‐specific application, namely, blood vessel segmentation in retinal images where experiments are conducted on the widely used digital retinal images for vessel extraction (DRIVE) dataset. The obtained results demonstrate that the proposed method outperforms state‐of‐the‐art general segmentation techniques in terms of performance with an F‐score of 0.92 ± 0.003 on the segmentation evaluation dataset. In addition, the proposed method achieves a comparable segmentation accuracy (0.9470) comparing with reported techniques of segmentation of blood vessels in images of retina and outperform them in terms of processing time. The average time required by our technique to segment one retinal image from DRIVE dataset is 8 seconds. Furthermore, empirically derived guidelines are proposed for adequately setting the ESN parameters for effective color image segmentation
    corecore